-180=64.952p-4.9p^2

Simple and best practice solution for -180=64.952p-4.9p^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -180=64.952p-4.9p^2 equation:


Simplifying
-180 = 64.952p + -4.9p2

Solving
-180 = 64.952p + -4.9p2

Solving for variable 'p'.

Reorder the terms:
-180 + -64.952p + 4.9p2 = 64.952p + -64.952p + -4.9p2 + 4.9p2

Combine like terms: 64.952p + -64.952p = 0.000
-180 + -64.952p + 4.9p2 = 0.000 + -4.9p2 + 4.9p2
-180 + -64.952p + 4.9p2 = -4.9p2 + 4.9p2

Combine like terms: -4.9p2 + 4.9p2 = 0.0
-180 + -64.952p + 4.9p2 = 0.0

Begin completing the square.  Divide all terms by
4.9 the coefficient of the squared term: 

Divide each side by '4.9'.
-36.73469388 + -13.2555102p + p2 = 0

Move the constant term to the right:

Add '36.73469388' to each side of the equation.
-36.73469388 + -13.2555102p + 36.73469388 + p2 = 0 + 36.73469388

Reorder the terms:
-36.73469388 + 36.73469388 + -13.2555102p + p2 = 0 + 36.73469388

Combine like terms: -36.73469388 + 36.73469388 = 0.00000000
0.00000000 + -13.2555102p + p2 = 0 + 36.73469388
-13.2555102p + p2 = 0 + 36.73469388

Combine like terms: 0 + 36.73469388 = 36.73469388
-13.2555102p + p2 = 36.73469388

The p term is -13.2555102p.  Take half its coefficient (-6.6277551).
Square it (43.92713767) and add it to both sides.

Add '43.92713767' to each side of the equation.
-13.2555102p + 43.92713767 + p2 = 36.73469388 + 43.92713767

Reorder the terms:
43.92713767 + -13.2555102p + p2 = 36.73469388 + 43.92713767

Combine like terms: 36.73469388 + 43.92713767 = 80.66183155
43.92713767 + -13.2555102p + p2 = 80.66183155

Factor a perfect square on the left side:
(p + -6.6277551)(p + -6.6277551) = 80.66183155

Calculate the square root of the right side: 8.981193214

Break this problem into two subproblems by setting 
(p + -6.6277551) equal to 8.981193214 and -8.981193214.

Subproblem 1

p + -6.6277551 = 8.981193214 Simplifying p + -6.6277551 = 8.981193214 Reorder the terms: -6.6277551 + p = 8.981193214 Solving -6.6277551 + p = 8.981193214 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '6.6277551' to each side of the equation. -6.6277551 + 6.6277551 + p = 8.981193214 + 6.6277551 Combine like terms: -6.6277551 + 6.6277551 = 0.0000000 0.0000000 + p = 8.981193214 + 6.6277551 p = 8.981193214 + 6.6277551 Combine like terms: 8.981193214 + 6.6277551 = 15.608948314 p = 15.608948314 Simplifying p = 15.608948314

Subproblem 2

p + -6.6277551 = -8.981193214 Simplifying p + -6.6277551 = -8.981193214 Reorder the terms: -6.6277551 + p = -8.981193214 Solving -6.6277551 + p = -8.981193214 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '6.6277551' to each side of the equation. -6.6277551 + 6.6277551 + p = -8.981193214 + 6.6277551 Combine like terms: -6.6277551 + 6.6277551 = 0.0000000 0.0000000 + p = -8.981193214 + 6.6277551 p = -8.981193214 + 6.6277551 Combine like terms: -8.981193214 + 6.6277551 = -2.353438114 p = -2.353438114 Simplifying p = -2.353438114

Solution

The solution to the problem is based on the solutions from the subproblems. p = {15.608948314, -2.353438114}

See similar equations:

| a^2+16a-15=0 | | -4y*-6a= | | -4yx-6a= | | -x-13y+9x+2y= | | 2=(22/l)^2 | | -9.8+(-2.8)= | | -9(t-8)-(t+1)=5 | | y=-2x-11 | | 114.7=17.62x+4.9x | | (7-i)/(4-8i) | | 1/3(3/5)^2-(1/5)^2 | | 12m^2f=0 | | 14x^8/2x^6 | | -5(3Y+3)-17=-6(Y+8)+3Y | | -sin(5x)=0 | | 4y=12x+5 | | 12x^2-96x+252=0 | | P-(P+2)=8(P-3)+3P | | 3e^5x=1749 | | 10x+y+9=0 | | 14-6=x-3 | | 75(x+9.00)=11025 | | x+2/x-3=x-5/x+2 | | 4(axb)=25 | | -12(4/3) | | 4x-24=x-3 | | 3x-21+4x=15 | | ax-by+cxy=z | | 2.50s/9=s-1/2 | | 1x+5=-8-2x+12 | | 1.50s-9=30+1.50s | | ax-by+cry=z |

Equations solver categories